
JOURNAL OF COhtPUTA’lTONAL PHYSICS 9, 365-371 (1972) 

Note 

Use of The Simplex Method in 
Nonlinear Programming for Duct Layout Design* 

In recent years the complexity of fluid distribution systems, such as spacecraft 
environmental control systems and large-scale central air-conditioning systems, 
has increased to the point that design by engineering intuition may lead to costly 
results. Some researchers have considered the optimization of the components in 
a preselected configuration [l, 21, but little work has been done on the optimization 
of the configuration itself [3]. This paper discusses research [4] which has resulted 
in a new method which can be used to determine the optimal arrangement of 
components within a system. This optimal arrangement can be used as the basis 
for the final detailed design, including pressure balancing. 

Specifically, the method presented optimizes the ducting arrangement of any 
fluid distribution system for which the objective function, the cost, is separable 
and concave with respect to flow rate and the required flow rate is known at given 
locations. The method involves a modified Simplex linear-programming procedure, 
which accommodates the nonlinear cost function by linearly approximating it in 
such a way that all possibly favorable (cost reducing) changes in the path 
arrangement are examined. 

DESCRIPTION OF PROBLEM 

The distribution network considered here consists of a single source and n sinks 
of arbitrary but specified capacity ri , where i is the sink number. There are two 
connections between every pair of nodes (source and sinks), one in each direction, 
such that there are m = 2 (nzf1) = n(n + 1) connections or paths. Each path has 
a nonnegative flow rate x5 , where j is the path number. 

* This work was performed under Grant No. DAADOS68-C-0094, a Department of Defense 
Themis Grant. 
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A flow balance at each node yields the constraint equations, which may be 
written as 

2 aijxj = ri i = 1, 2 ,..., n, 
j-1 

and 
xj 3 0 

(1) 
j = 1, 2 ,..., m, 

where 

I 

Jr1 if the flow in the jth path is to the ith node, 
aij = -1 if the flow in the jth path is away from the ith node, 

0 if the jth path is not connected to the ith node. 

The objective function is 

c = 2 Cj(Xj), 
61 

(2) 

where cj(xj) is the nonlinear but concave cost function for each individual path. 

ANALYSIS OF ALGORITHM 

Classical linear programming techniques [5,6] cannot be used to solve the subject 
problem directly due to the nonlinear objective function. Nonlinear methods, 
such as polygonal approximation,may be used, but not without the expense of large 
increases in the number of variables and amount of computation [7]. 

If the objective function were linear, say 

i=l 

then at any step in the Simplex method we know that xk, enters the basis and xS1 
departs (provided we are not already at the optimum), where kl is defined by 

Ykl = tkl - Olkl = mFx(ti - ai) > 0, (4) 

ti = i Llljaji 3 

j=l 

and p1 is defined by 

> 0. (6) 
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(The applicability of the Simplex basic feasible solution for concave cost functions 
is indicated in Appendix A.) The new basic feasible solution is 

Xj’ = 0 nonbasic j, except j = k, , 

~~1 = xj - Oaik, basic j. 

(7) 

In the problem of interest, however, the cost function is not linear; so yi poses 
a severe problem. 

The new method described in the remainder of this paper involves linearly 
approximating the cost function at each step in the iteration and for each flow in 
the basis. 

Physically, the selection of the subscript k, implies that the new duct will be one 
whose addition will produce the maximum rate of decrease in system cost. This 
selection can be accomplished in the nonlinear case by estimating the effects the 
addition of the duct will have on the costs of the other ducts, using 

(1) the maximum possible rate of decrease in cost when the trial value of k, 
implies that the flow rate is reduced in a duct, and 

(2) the minimum possible rate of increase in cost when the trial value of k, 
implies the flow rate is increased in a duct. 

The combination of decreased and increased costs associated with all possible 
selections of kl leads, by direct comparison, to the recognition of the one combi- 
nation of k, and p1 [via Eqs. (4) and (6)] which maximizes the rate of decrease in 
system cost (provided the optimal solution has not already been found). The 
problem is to determine whether a particular choice of k, causes the flow to increase 
or decrease in each of the other ducts. 

From the third part of Eq. (7), we can see that, if 

aik, = -1 <o, then xi’ > xi (increases), (8) 

aikl = 0, then Xi’ = xi (no change), (9) 

aik, = $1 P-0, then xi’ < Xi (decreases). (10) 

Simply by observing the sign of a($ we can determine if the flow in a duct will 
increase or decrease by the addition of duct “kl”, and can therefore select the linear 
approximation to the cost function such that the nonlinear version of yk, over- 
estimates the improvement in this cost, C. 

It is necessary to collectively maximize the savings and minimize the additional 
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costs due to the addition of x, . Before X, is introduced the value of xi is wO with 
cost c, = Ci(W(J. 

If aig = + 1, xi will decrease when x, is added and the savings is 

AC- = co - Cl = Cf(W()) - Ci(W1). 

Since C, is not known, a linear approximation (Fig. 1) is used, 

(11) 

AC&m = co - + Wl . [ 1 

C approx 

glow Rate 

FIG. 1. Exact and approximate cost functions for uiq = 

C approx 

cO 
C. inter 

wO w1 
W max 

Flow Rate 

FIG. 2. Exact and approximate cost functions for Uic = - 1. 
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Since c( is concave, 

~Gpprox > AC-, (13) 

no matter what the magnitude of the change in xi . 
For ai = -1, xi increases with the addition of x, . The increase in cost for xi is 

Llc+ = Cl - co = C$(Wl) - Ci(WO). (14) 

The linear approximation (Fig. 2) is 

LICafppprox = [ Cmax - co ] 
Wmax- wo 

Wl + Glter - co 3 (15) 

where Wmax is the total system flow. No matter what the value of xi , 

dCa+pprox < Llc+. (16) 

The above approximations provide slope estimates that can be used in the 
computation of ti . The 01~~ term in (ti - aiO) can be estimated by the local slope at 
Wmm so that the cost of adding the new duct is underestimated. 

This procedure insures that all favorable changes will be attempted; however, 
unfavorable changes may appear to be favorable. For this reason, before a change 
is actually made, the total system cost under that change is compared with the 
present cost. If the new cost is less, the change is made. If the new cost is greater, 
the next most favorable change is made. 

As in the Simplex method, the constraint equations must be rearranged so the 
Q’S corresponding to the constraint equations, i = 1,2,..., n, and the ducts with 
nonzero flow, j = 1,2 ,..., p1 - 1, p1 + l,..., II, k, , form the identity matrix. Since 
aij = 0 or &l in the present case, the necessary transformations take the simple 
form 

ri’ = ri - &&k, , i fpl, (17) 

, aij = aij - a&ik, , ifP1, (19) 

aa,j = Ue,j . (20) 

The algorithm can now be continued until the optimum is found. 
Although convergence to an optimum has been established, convergence to the 

global optimum has not been proven. The nonlinear cost function prevents the 
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adaptation of the proof used in linear programming to the current problem. The 
many examples that have been studied to date have all converged to the global 
optimum, but, of course, this is no proof. The procedure of overestimating the 
improvement in cost of all potential one-step changes gives credence to the idea 
that convergence to the global optimum will indeed occur for all cases. 

CONCLUSION 

A method has been developed which optimizes the path arrangement of a fluid 
distribution network when the demand is known at given locations and the cost 
function is separable and concave. It has been successfully implemented for use 
with air-conditioning-duct layout design. In addition, the method may have 
important applications in circuit design, routing problems, and transportation 
problems, in which the constraints are linear and the cost function is separable 
and concave. 

APPENDIX A 

The algorithm depends on the fact that it is always more economical to feed a 
node with a single duct rather than with more than one. This can be shown by 
assuming there is a node with total requirement wO which is more economically 
fed by N + 1 ducts rather than any single duct. Let 

c = co (w. - f Wj) + 5 Ci(Wi). 
i=l i=l 

Suppose cO(wO) is the cost of the particular duct for which 

cdwo) < G(h)> i = 1, 2 ,..., N. 

(A-1) 

(44-2) 

Due to the concavity of the cost function, 

dhWO) 3 hCi(WO)~ i = 0, I,..., N. (A-3) 

Since we have assumed the N + 1 ducts are more economical than the single duct, 

c -=I Q%)- (A-4) 

But from Eqs. (A-l), (A-3), and (A-4), 

4%) > c > wo - CL wg 
wo Co(%) + 5 2 &4. 

i=l 
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Then 

371 

(A-6) 

which, since wi > 0, contradicts Eq. (A-2). 
Since N = 1,2, 3 ,..., it can be concluded that each node will be fed by one and 

only one duct. Furthermore, if only one duct most economically feeds one node, 
then n ducts most economically feed n nodes. 
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